To facilitate research on text generation, this paper presents a comprehensive and unified library, TextBox 2.0, focusing on the use of pre-trained language models (PLMs). To be comprehensive, our library covers $13$ common text generation tasks and their corresponding $83$ datasets and further incorporates $45$ PLMs covering general, translation, Chinese, dialogue, controllable, distilled, prompting, and lightweight PLMs. We also implement $4$ efficient training strategies and provide $4$ generation objectives for pre-training new PLMs from scratch. To be unified, we design the interfaces to support the entire research pipeline (from data loading to training and evaluation), ensuring that each step can be fulfilled in a unified way. Despite the rich functionality, it is easy to use our library, either through the friendly Python API or command line. To validate the effectiveness of our library, we conduct extensive experiments and exemplify four types of research scenarios. The project is released at the link: https://github.com/RUCAIBox/TextBox.
translated by 谷歌翻译
尽管利用对抗性示例的可传递性可以达到非目标攻击的攻击成功率,但它在有针对性的攻击中不能很好地工作,因为从源图像到目标类别的梯度方向通常在不同的DNN中有所不同。为了提高目标攻击的可转移性,最近的研究使生成的对抗示例的特征与从辅助网络或生成对抗网络中学到的目标类别的特征分布保持一致。但是,这些作品假定培训数据集可用,并且需要大量时间来培训网络,这使得很难应用于现实世界。在本文中,我们从普遍性的角度重新审视具有针对性转移性的对抗性示例,并发现高度普遍的对抗扰动往往更容易转移。基于此观察结果,我们提出了图像(LI)攻击的局部性,以提高目标传递性。具体而言,Li不仅仅是使用分类损失,而是引入了对抗性扰动的原始图像和随机裁剪的图像之间的特征相似性损失,这使得对抗性扰动的特征比良性图像更为主导,因此提高了目标传递性的性能。通过将图像的局部性纳入优化扰动中,LI攻击强调,有针对性的扰动应与多样化的输入模式,甚至本地图像贴片有关。广泛的实验表明,LI可以实现基于转移的目标攻击的高成功率。在攻击Imagenet兼容数据集时,LI与现有最新方法相比,LI的提高为12 \%。
translated by 谷歌翻译
近年来,破坏预测取得了迅速的进展,尤其是在机器学习(ML)的方法中。理解为什么预测因子使某个预测与未来Tokamak破坏预测指标的预测准确性一样至关重要。大多数破坏预测因素的目的是准确性或跨机能力。但是,如果可以解释中断预测模型,则可以说明为什么某些样品被归类为中断前体。这使我们能够说出传入的破坏类型,并使我们深入了解破坏机制。本文根据J-TEXT上的物理引导特征提取(IDP-PGFE)设计了一种称为可解释的破坏预测变量的破坏预测变量。通过提取物理引导的特征有效地改善了模型的预测性能。需要高性能模型来确保解释结果的有效性。 IDP-PGFE的可解释性研究提供了对J-Text破坏的理解,并且通常与现有的破坏理解一致。 IDP-PGFE已被应用于破坏,因为在J文本上的密度极限实验的密度不断增加。 PGFE的时间演变具有贡献,表明ECRH的应用触发了辐射引起的破坏,从而降低了破坏时的密度。虽然RMP的应用确实提高了J文本中的密度极限。解释性研究指导了RMP不仅会影响MHD不稳定性,而且还会影响辐射轮廓的密度极限破坏的物理机制,从而延迟了密度极限的破坏。
translated by 谷歌翻译
预测不同托卡马克人的破坏是要克服的巨大障碍。未来的Tokamaks在高性能排放时几乎无法忍受中断。很少有高性能的破坏排放几乎无法构成丰富的训练集,这使得当前数据驱动的方法难以获得可接受的结果。能够将在一个Tokamak训练的中断预测模型转移到另一种训练的机器学习方法以解决该问题。关键是一个包含特征提取器的破坏预测模型,该模型能够在Tokamak诊断数据中提取常见的破坏前体痕迹,并具有可转移的破坏分类器。基于上面的问题,该论文首先提出了专门针对Tokamaks上的普通诊断中的破坏前体特征而设计的深融合功能提取器,该特征是根据当前已知的破坏前体,为可转移模型提供了有希望的基础。通过与J-Text上的手动特征提取进行比较,可以证明融合功能提取器。基于在J-TEXT上训练的功能提取器,将中断预测模型转移到East数据中,仅来自East实验的20次放电。该性能与经过1896年出院的模型相当。从其他模型培训方案之间的比较,转移学习表明了其在预测不同托卡马克人的破坏方面的潜力。
translated by 谷歌翻译
我们调查了无线网络中多个联合学习(FL)服务的数据质量感知动态客户选择问题,每个客户都有动态数据集,用于同时培训多个FL服务,每种FL服务都必须为客户付费。限制货币预算。在训练回合中,这个问题被正式化为不合作的马尔可夫游戏。提出了一种基于多代理的混合增强算法,以优化共同的客户选择和付款操作,同时避免采取行动冲突。仿真结果表明,我们提出的算法可以显着改善训练性能。
translated by 谷歌翻译
最近的研究表明,在一个白盒模型上手工制作的对抗性示例可用于攻击其他黑箱型号。这种跨模型可转换性使得执行黑匣子攻击可行,这对现实世界的DNN应用程序提出了安全性问题。尽管如此,现有的作品主要专注于调查跨不同深层模型的对抗性可转移,该模型共享相同的输入数据模型。从未探索过对抗扰动的跨莫代尔转移性。本文研究了不同方式的对抗性扰动的可转移性,即利用在白盒图像模型上产生的对抗扰动,以攻击黑盒视频模型。具体而言,通过观察到图像和视频帧之间的低级特征空间是相似的,我们提出了一种简单但有效的跨模型攻击方法,名称为图像到视频(I2V)攻击。通过最小化来自对手和良性示例的预先接受的图像模型的特征之间的特征之间的余弦相似性来生成对抗性帧,然后组合生成的对抗性帧以对视频识别模型进行黑盒攻击。广泛的实验表明,I2V可以在不同的黑匣子视频识别模型上实现高攻击成功率。在动力学-400和UCF-101上,I2V分别实现了77.88%和65.68%的平均攻击成功率,阐明了跨越模态对抗攻击的可行性。
translated by 谷歌翻译
最近的研究表明,深神经网络(DNN)易受对抗的对抗性斑块,这引入了对输入的可察觉而且局部化的变化。尽管如此,现有的方法都集中在图像上产生对抗性补丁,视频中的对应于视频的探索。与图像相比,攻击视频更具挑战性,因为它不仅需要考虑空间线索,而且需要考虑时间线索。为了缩短这种差距,我们在本文中介绍了一种新的对抗性攻击,子弹屏幕评论(BSC)攻击,攻击了BSC的视频识别模型。具体地,通过增强学习(RL)框架产生对抗性BSC,其中环境被设置为目标模型,并且代理商扮演选择每个BSC的位置和透明度的作用。通过不断查询目标模型和接收反馈,代理程序逐渐调整其选择策略,以实现具有非重叠BSC的高鬼速。由于BSC可以被视为一种有意义的补丁,将它添加到清洁视频不会影响人们对视频内容的理解,也不会引起人们的怀疑。我们进行广泛的实验,以验证所提出的方法的有效性。在UCF-101和HMDB-51数据集中,我们的BSC攻击方法可以在攻击三个主流视频识别模型时达到约90 \%的愚蠢速率,同时仅在视频中封闭\无文无线8 \%区域。我们的代码可在https://github.com/kay -ck/bsc-attack获得。
translated by 谷歌翻译
虽然基于深度学习的视频识别模型取得了显着的成功,但它们易于通过在清洁视频样本上添加人难以扰动而产生的对抗性示例。如最近的研究所述,对抗性示例是可转换的,这使得对现实世界应用中的黑匣子攻击是可行的。然而,当攻击其他视频模型和基于转移的视频模型的转移攻击时,大多数现有的对抗性攻击方法具有差的可转移性仍未开发。为此,我们建议促进对视频识别模型的黑匣子攻击的视频逆势示例的可转移性。通过广泛的分析,我们发现不同的视频识别模型依赖于不同的鉴别性时间模式,导致视频逆势示例的可转移性差。这使我们引入了延时翻译攻击方法,该方法优化了一组时间翻译视频剪辑上的对抗扰动。通过在翻译视频中产生对抗性示例,所得到的对手示例对白盒模型中存在的时间模式不太敏感,因此可以更好地转移。在动力学-400数据集和UCF-101数据集上的广泛实验表明,我们的方法可以显着提高视频逆势示例的可转移性。对于对视频识别模型的基于转移的攻击,在UCF-101上实现了动力学-400和48.60%的61.56%的平均攻击成功率。代码可在https://github.com/zhipeng-wei/tt上获得。
translated by 谷歌翻译
视觉变压器(VITS)在一系列计算机视觉任务上表现出令人印象深刻的性能,但它们仍然遭受对抗的例子。 %以与CNN类似的方式制作。在本文中,我们对变压器的对抗攻击应特别适合其架构,共同考虑斑块和自我关注,以实现高可转移性。更具体地说,我们介绍了一种双攻击框架,其中包含不关注(PNA)攻击和果末攻击,以改善对抗不同风格的对抗性样本的可转移性。我们表明,在背部衰退期间跳过关注的梯度可以产生具有高可转换性的对抗性示例。此外,通过优化在每个迭代的随机采样的斑块的随机采样子集产生的对抗扰动,该次迭代的成功率比使用所有补丁的攻击实现了更高的攻击成功率。我们评估攻击最先进的VITS,CNN和强大的CNNS的可转移性。这些实验的结果表明,所提出的双重攻击可以大大提高VITS与VITS之间的转移性。此外,所提出的方法可以容易地与现有的传输方法组合以提高性能。代码可在https://github.com/zhipeng-wei/pna-patchout获得。
translated by 谷歌翻译
与可见的摄像机不同的是逐帧记录强度图像的可见摄像机,生物学启发的事件摄像头会产生一系列的异步和稀疏事件,并且延迟较低。在实践中,可见的摄像机可以更好地感知纹理细节和慢动作,而事件摄像机可以没有运动模糊并具有更大的动态范围,从而使它们能够在快速运动和低照明下良好地工作。因此,两个传感器可以相互合作以实现更可靠的对象跟踪。在这项工作中,我们提出了一个大规模可见事件基准(称为Visevent),因为缺乏针对此任务的现实和缩放数据集。我们的数据集由在低照明,高速和背景混乱场景下捕获的820个视频对组成,并将其分为训练和测试子集,每个培训和测试子集分别包含500和320个视频。基于Visevent,我们通过将当前的单模式跟踪器扩展到双模式版本,将事件流转换为事件图像,并构建30多种基线方法。更重要的是,我们通过提出跨模式变压器来进一步构建一种简单但有效的跟踪算法,以在可见光和事件数据之间实现更有效的功能融合。对拟议的Visevent数据集(FE108)和两个模拟数据集(即OTB-DVS和fot-DVS)进行了广泛的实验,验证了我们模型的有效性。数据集和源代码已在我们的项目页面上发布:\ url {https://sites.google.com/view/viseventtrack/}。
translated by 谷歌翻译